1,459 research outputs found

    Beyond the Verdict: Why the Courts Must Protect Jurors From the Public Before, During, and After High-Profile Cases

    Get PDF
    In a time when more and more criminal trials are saturated in news coverage, media outlets race to get as much information as possible to the public. That access to the criminal justice system is a right protected by the First Amendment. But where does the access stop? This Note explores those limits, and the intersection between the First and Fourth Amendments

    Complex interactions between dwarf mistletoe, fuel loading, and fire in the lodgepole pine dominated forests of central Colorado

    Get PDF
    2016 Fall.Includes bibliographical references.Lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt. ex Engelm) is an obligate hemiparsite that infects lodgepole pine (Pinus contorta Dougl. Ex. Loud) throughout the large majority of lodgepole pine’s range. Lodgepole pine dwarf mistletoe increases mortality rates, alters tree biomass distributions, and slows overall tree growth, which results in substantial losses to stand productivity and wood quality. In lodgepole pine dominated forests, dwarf mistletoe and wildfire are fundamental disturbances that may interact with each other in complex ways. This interaction is bidirectional as wildfire can either positively or negatively affect post-fire dwarf mistletoe populations, and pre-fire dwarf mistletoe populations may influence wildfire severity. Though it has long been assumed that dwarf mistletoe increases potential wildfire severity in lodgepole pine forests through modifications to the fuels complex, empirical data to support this conclusion is lacking. The overall goal of this project was to enhance the understanding of both sides of the fire-dwarf mistletoe interaction through a combination of long-term post-fire data, forest measurements, and simulation of dwarf mistletoe impacts and intensification. Chapter one provides background into dwarf mistletoe biology and pathology, and reviews the existing literature on interactions between fire and dwarf mistletoe. The second chapter documents the results of research into the influence of dwarf mistletoe infestation level on stand structure and fuel parameters that influence potential fire behavior. To evaluate the relationship between infestation severity and stand structure and forest fuels plots were randomly located within stands containing a range of dwarf mistletoe infestation severities. Of primary interest were impacts to canopy base height and the loading of fuels both on the forest floor and in the canopy. Chapter three is a case study documenting the impact of three prescribed crown fires on dwarf mistletoe populations thirty years post-fire. These fires burned across a range of mortality levels allowing for a detailed evaluation of the influence of fire severity on dwarf mistletoe populations. This chapter combines field measurements with forest growth and yield simulations from the United States Forest Service’s Forest Vegetation Simulator to understand longer-term impacts to both the dwarf mistletoe population and stand productivity. Field data from randomly located plots indicate that dwarf mistletoe may have conflicting impacts on parameters influencing crown fire potential and wildfire severity. This finding suggests that the impact of dwarf mistletoe infestation of potential wildfire severity may not conform to the positive linear relationship assumed by many forest pathologists. Infestation level was found to have a strong positive relationship with the loading of surface fuels of all sizes, and was negatively related to canopy base height, and calculated canopy fuel load and canopy bulk density. Impacts to stand structure include significant reductions to live basal area and average tree size, and significant increases to the density and basal area of standing dead trees. The results from the long-term post-fire data set provide experimental evidence showing that fire severity negatively influences future dwarf mistletoe populations, and that long-term population reductions are possible without complete stand replacement. Over multiple fire cycles, feedbacks between fire and dwarf mistletoe may enhance heterogeneity in burn patterns, infestation severity, and stand structures across the landscape

    Beyond the Verdict: Why the Courts Must Protect Jurors From the Public Before, During, and After High-Profile Cases

    Get PDF
    In a time when more and more criminal trials are saturated in news coverage, media outlets race to get as much information as possible to the public. That access to the criminal justice system is a right protected by the First Amendment. But where does the access stop? This Note explores those limits, and the intersection between the First and Fourth Amendments

    Horizontal and vertical forest complexity interact to influence potential fire behavior

    Get PDF
    2022 Spring.Includes bibliographical references.Wildland fire behavior is a dynamic process controlled by complex interactions among fuels, weather, and topography. There is significant need to better understand the role of fuels and, particularly, complex arrangements of fuels, on potential fire behavior and effects as a there is a growing emphasis on forest treatments that emulate the heterogenous structures of historical forest ecosystems. Ideally such treatments are intended to reduce fire hazard while concurrently improving resilience to a wide range of disturbance agents and restoring the natural ecosystem dynamics that maintained these forest structures. One way to evaluate how the complex forest structures created by these treatments will influence fire behavior are modeling approaches that account for dynamic interactions between fire, fuels, and wind. These physical fire models build from computational fluid dynamics methods to include processes of heat transfer, vegetative fuel dehydration and pyrolysis, and gas phase ignition and combustion. In this work, several aspects of horizontal and vertical forest structure were evaluated to understand how spatial complexity influences fire behavior, with a particular emphasis on the transition of a surface fire into tree crowns. I used a combination of spatially explicit field data and a physics-based wildfire model, the Wildland-Urban Interface Fire Dynamics Simulator (WFDS), to deepen our fundamental understanding of fire behavior, inform the design of forest treatments that aim to achieve a variety of ecological and social objectives, and develop hypotheses related to the pattern-process feedbacks that contributed to the maintenance of resilient forests across millennia. Chapter 2 presents a simulation study focused on the relationship between horizontal forest structure and surface to crown heat transfer and crown fire initiation. The results indicated that relative to larger 7- and 19-tree groups, isolated individual trees and 3-tree groups had greater convective cooling and reduced canopy heat flux. Because isolated individuals and 3-tree groups were exposed to less thermal energy, they required a greater surface fireline intensity to initiate torching and had less crown consumption than trees within larger groups. Similarly, I found that increased crown separation distance between trees reduced the net heat flux leading to reduced ignition potential. These findings identify the potential physical mechanisms responsible for supporting the complex forest structures typical of high-frequency fire regimes and may be useful for managers designing fuel hazard reduction and ecological restoration treatments. Chapter 3 extends chapter 2 by investigating how different levels and types of vertical heterogeneity influence crown fire transition and canopy consumption within tree groups. These results show the importance of fuel stratum gap (or canopy base height) on vertical fire propagation, however vertical fire propagation was mediated by the level of horizontal connectivity in the upper crown layers. This suggests that the fuel stratum gap cannot fully characterize the torching hazard. The results also indicate that as the surface fire line intensity increases, the influence of horizontal connectivity on canopy consumption is amplified. At the scale of individual tree groups, the perceived hazard of small, understory trees and vertical fuel continuity may be offset by lower horizontal continuity (or canopy bulk density) within the midstory and overstory crown layers. Chapter 4 compares outcomes from four real-world forest treatments that cover a range of potential treatment approaches to evaluate their impacts of forest spatial pattern and potential fire behavior. My results indicate that restoration treatments created greater vertical and horizontal structural complexity than the fuel hazard reduction treatments but resulted in similar reductions to potential fire severity. However, the restoration treatments did increase the surface fire rate of spread which suggests some potential fire behavior tradeoffs among treatment approaches. Overall, these results suggest the utility of restoration treatments in achieving a wide range of management objectives, including fire hazard reduction, and that they can be used in concert with traditional fuel hazard reduction treatments to reduce landscape scale fire risk. Together this work shows that tree spatial pattern can significantly influence crown fire initiation and canopy consumption through alterations to net heat transfer and feedbacks among closely spaced trees. At the scale of the tree group these results suggest that larger tree groups may sustain higher levels of canopy consumption and mortality as they are easier to ignite and, in cases with small separation between crowns, can sustain horizontal spread resulting in density-depended crown damage. These findings carry over to vertically complex groups where the spatial relationship between small, understory trees and larger, overstory trees has a large impact on the ability of fire to be carried vertically. Further, in these vertically complex groups reducing the density (and/or increasing the horizontal separation) of the overstory trees, resulted in lower rates of crown fuel consumption, therefore, mitigating some of the "laddering" effect caused by the presence of small understory trees. These complex interactions between vertical and horizontal aspects of stand structure were born out in my evaluation of the measured forest treatments, where similar crown fire behavior reductions were observed across various stand structures. Overall, this work shows that forest managers can apply treatments to achieve a wide range of ecological benefits while simultaneously increasing fire resistance and resilience

    How patterns of injecting drug use evolve in a cohort of people who inject drugs

    Get PDF
    This research found an overall movement away from street based drug purchasing and drug use, towards more activity in private settings, which has important implications for the harms experienced by people who inject drugs. Foreword This paper investigates the frequency of intravenous drug use in a cohort of people who inject drugs, and the decline in use over time. It provides an important indication of the effectiveness of current interventions at reducing the consumption of illicit drugs. Comparisons are made between the injection frequency of participants on or off Opioids Substitution Therapy (OST), and according to the settings in which drugs are most frequently purchased and used (eg street, house). This research found an overall movement away from street based drug purchasing and drug use, towards more activity in private settings. This has important implications for the harms experienced by people who inject drugs. Intravenous drug use was persistent, with only slow declines observed in the frequency of the cohort’s overall use. Lower injection frequency was associated with use in private rather than public locations as well as the uptake of OST. Additional work is needed to understand how this change in setting is affected by and also affects current interventions, and whether it can be used to help further reduce injecting drug use

    Proposed Repositioning of the Pennsylvanian-Permian Boundary in Kansas

    Get PDF
    The Pennsylvanian-Permian boundary in North America has not corresponded with the Carboniferous-Permian boundary in Europe for decades. To facilitate global correlations, an attempt is here made to suggest a possible solution to the dilemma by making the best possible correlation of the Kansas stratigraphic section with the recently proposed boundary location in the Russian type section. The Virgilian Stage (Upper Pennsylvanian) was defined nearly 60 years ago to include those rocks lying between the Missourian Stage and the base of the Permian System. In the type area in east-central Kansas, the Virgilian Stage comprised the Douglas, Shawnee, and Wabaunsee Groups. In Kansas, the Pennsylvanian-Permian boundary was placed eventually at the top of the Brownville Limestone Member on the basis of what was then believed to be a regional disconformity rather than on paleontological criteria. Recent advances in fusulinid and conodont biostratigraphy provide tentative criteria upon which to suggest a change in the placement of the Virgilian-Permian boundary. A Russian delegation formally proposed at the International Congress on the Permian System of the World held in Perm, U.S.S.R. (Russia) in August 1991 that the base of the Permian System be established at the base of the Asselian Stage at the approximate stratigraphic position of the first inflated fusulinids (Sphaeroschwagerina vulgaris-S. fusiformis). Inflated schwagerinids (Paraschwagerina kansasensis) first occur, along with evolutionary changes in conodonts, in the Neva Limestone Member of the Grenola Limestone (Council Grove Group). Thus, if we assume that inflated schwagerinids arose globally at about the same time, the Neva Limestone Member is the oldest definitive Permian in the United States midcontinent, as related to the newly proposed boundary in Russia and Kazakhstan. Consequently, we propose that the Virgilian Stage in Kansas include rocks between the top of the Missourian Stage and the base of the Neva Limestone Member

    Redefinition of the Upper Pennsylvanian Virgilian Series in Kansas

    Get PDF
    The Virgilian Series was defined nearly 60 years ago to include those rocks lying between the Missourian Series and the base of the Permian System. In the type area in east-central Kansas, the Virgilian Series comprised the Douglas, Shawnee, and Wabaunsee Groups. In Kansas, the upper boundary of the Virgilian (Pennsylvanian-Permian boundary) was placed at the top of the Brownville Limestone Member on the basis of what was then believed to be a regional disconformity rather than on paleontological criteria. Recent advances in fusulinid and conodont biostratigraphy provide tentative criteria upon which to effect a change in the placement of the Virgilian-Permian boundary. It is now generally agreed that the base of the Permian System is approximated by the first occurrence of Pseudoschwagerina, an inflated schwagerinid. Furthermore, the Subcommission on Permian Stratigraphy has informally agreed that the base of the Permian should coincide with the first occurrence of the conodont species Streptognathodus barskovi. Inflated schwagerinids (Paraschwagerina kansasensis) first occur along with evolutionary changes in the Conodonta in the Neva Limestone of the Council Grove Group. Consequently, the Virgilian Series is herein redefined to include rocks present between the top of the Missourian Series and the base of the Neva Limestone. To increase compatibility between chronostratigraphic and lithostratigraphic nomenclature, the following changes are made: I) the Admire Group is redefined to include rocks between the base of the Onaga Shale and the base of the Neva Limestone; 2) the Admire is reassigned to the upper Virgilian Series; 3) the Neva Limestone is elevated to formational status; 4) the Grenola Limestone is redefined to include strata between the top of the Roca Shale and the base of the Neva Limestone; 5) the overlying Council Grove Group is redefined to include strata lying between the base of the Neva Limestone and the base of the Chase Group; and 6) regionally the base of the emended Council Grove Group marks the base of the Permian System. The emended Council Grove Group is lower Wolfcampian in age and is time equivalent with the Neal Ranch Formation of the west Texas type Wolfcampian

    Redefinition of the Upper Pennsylvanian Virgilian Series in Kansas

    Get PDF
    The Virgilian Series was defined nearly 60 years ago to include those rocks lying between the Missourian Series and the base of the Permian System. In the type area in east-central Kansas, the Virgilian Series comprised the Douglas, Shawnee, and Wabaunsee Groups. In Kansas, the upper boundary of the Virgilian (Pennsylvanian-Permian boundary) was placed at the top of the Brownville Limestone Member on the basis of what was then believed to be a regional disconformity rather than on paleontological criteria. Recent advances in fusulinid and conodont biostratigraphy provide tentative criteria upon which to effect a change in the placement of the Virgilian-Permian boundary. It is now generally agreed that the base of the Permian System is approximated by the first occurrence of Pseudoschwagerina, an inflated schwagerinid. Furthermore, the Subcommission on Permian Stratigraphy has informally agreed that the base of the Permian should coincide with the first occurrence of the conodont species Streptognathodus barskovi. Inflated schwagerinids (Paraschwagerina kansasensis) first occur along with evolutionary changes in the Conodonta in the Neva Limestone of the Council Grove Group. Consequently, the Virgilian Series is herein redefined to include rocks present between the top of the Missourian Series and the base of the Neva Limestone. To increase compatibility between chronostratigraphic and lithostratigraphic nomenclature, the following changes are made: I) the Admire Group is redefined to include rocks between the base of the Onaga Shale and the base of the Neva Limestone; 2) the Admire is reassigned to the upper Virgilian Series; 3) the Neva Limestone is elevated to formational status; 4) the Grenola Limestone is redefined to include strata between the top of the Roca Shale and the base of the Neva Limestone; 5) the overlying Council Grove Group is redefined to include strata lying between the base of the Neva Limestone and the base of the Chase Group; and 6) regionally the base of the emended Council Grove Group marks the base of the Permian System. The emended Council Grove Group is lower Wolfcampian in age and is time equivalent with the Neal Ranch Formation of the west Texas type Wolfcampian

    The Preservation and Protection of Native Biodiversity in the Guadalupe Nipomo Dunes Complex

    Get PDF
    The Guadalupe Nipomo Dunes Complex (GNDC) is located within the California Floristic Province, a biodiversity hotspot characterized by high rates of endemism and exceptional loss of habitat. In 1980, the US Fish and Wildlife Service described the GNDC as, “the most unique and fragile ecosystem in the State of California,” and ranked it first on a list of 49 habitat areas needing state protection. It is the largest coastal dune area in California and it is one of the last remaining, relatively intact ecosystems of its type and size in the western United States. The growing recognition of species decline and the limited number of dollars allocated to conservation and restoration have led to development of new conservation planning software and conservation strategies. Marxan and Zonation were selected for this project due to their worldwide acceptance in biodiversity conservation planning as well as their specialization in identifying priority zones for conservation. This document describes the unique use of conservation planning software to select areas for resource allocation. It outlines the process of selecting conservation targets, the habitats and species important to overall health of an ecosystem, by using the expert involvement approach. Most importantly, this document outlines areas of high biodiversity that will later be used to allocate resources for the preservation and protection of biodiversity within the Guadalupe Nipomo Dunes Complex. Introduced species are the second-leading cause (after habitat degradation/loss), causing or contributing to the decline in species abundance and diversity. Ehrharta calycina Smith has become highly invasive in the coastal dune communities of Central and Southern California and currently holds a “high” CAL-IPC inventory rating, defined as a species with severe ecological impacts on physical processes, plant and animal communities and vegetation structure as well as reproductive biology and other attributes conducive to moderate to high rates of dispersal and establishment. Ehrharta calycina is a prolific seeder and stores its seeds annually in the soil, collecting a substantial seedbank. Little is known about E.calycina outside its native range, as its invasion into California coastal ecosystem is fairly recent. A field experiment in the Guadalupe Nipomo Dunes Complex assessed the contribution of seeds originating from the seedbank as compared to seeds from above ground either dropping from maternal plants or blown in from outside the plots to the establishment of new E. calycina cover. After a nine month perios, new E. calycina cover from both sources was not significantly different. Visible coverage of E. calycina began 77 days (November 24, 2015) after plot installation. After nine months of surveying, coverage reached 19% in the Seedbank Present treatment and 21% in the Seedbank Absent treatment. There was no significant effect associated with the slope and aspect of the experimental locations. This experiment will aid in management of this invasive species by educating land managers to focus on preventing current seed production of established individuals as those sources of seed were as important as those originating in the seedbank. Stimulating germination of seeds from the seedbank with a concomitant management strategy such as herbicide application or physical removal will likely be the most effective methods for dealing with seeds in the seedbank

    Proposed Repositioning of the Pennsylvanian-Permian Boundary in Kansas

    Get PDF
    The Pennsylvanian-Permian boundary in North America has not corresponded with the Carboniferous-Permian boundary in Europe for decades. To facilitate global correlations, an attempt is here made to suggest a possible solution to the dilemma by making the best possible correlation of the Kansas stratigraphic section with the recently proposed boundary location in the Russian type section. The Virgilian Stage (Upper Pennsylvanian) was defined nearly 60 years ago to include those rocks lying between the Missourian Stage and the base of the Permian System. In the type area in east-central Kansas, the Virgilian Stage comprised the Douglas, Shawnee, and Wabaunsee Groups. In Kansas, the Pennsylvanian-Permian boundary was placed eventually at the top of the Brownville Limestone Member on the basis of what was then believed to be a regional disconformity rather than on paleontological criteria. Recent advances in fusulinid and conodont biostratigraphy provide tentative criteria upon which to suggest a change in the placement of the Virgilian-Permian boundary. A Russian delegation formally proposed at the International Congress on the Permian System of the World held in Perm, U.S.S.R. (Russia) in August 1991 that the base of the Permian System be established at the base of the Asselian Stage at the approximate stratigraphic position of the first inflated fusulinids (Sphaeroschwagerina vulgaris-S. fusiformis). Inflated schwagerinids (Paraschwagerina kansasensis) first occur, along with evolutionary changes in conodonts, in the Neva Limestone Member of the Grenola Limestone (Council Grove Group). Thus, if we assume that inflated schwagerinids arose globally at about the same time, the Neva Limestone Member is the oldest definitive Permian in the United States midcontinent, as related to the newly proposed boundary in Russia and Kazakhstan. Consequently, we propose that the Virgilian Stage in Kansas include rocks between the top of the Missourian Stage and the base of the Neva Limestone Member
    corecore